题目内容

13.某城市电业局为鼓励居民节约用电,采取按月用电量分段收费办法,居民应交电费y(元)与用电量x(度)的函数关系如图所示.
(1)分别求出当0≤x<50和x≥50时,y与x的函数关系式;
(2)若某居民该月用电65度,则应交电费多少元?

分析 (1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.
(2)根据(1)的函数解析式即可解答即可.

解答 解:(1)当0≤x≤50时.图象经过(0,0),(50,26).可设y=kx.
50k=26,
解得k=$\frac{13}{25}$,
∴y=$\frac{13}{25}$x(0≤x≤50).
当x≥50时.图象经过(50,26).(80,48),可设y=kx+b.
则有$\left\{\begin{array}{l}{50k+b=26}\\{80k+b=48}\end{array}\right.$解得$\left\{\begin{array}{l}{k=\frac{11}{15}}\\{b=-\frac{32}{3}}\end{array}\right.$,
∴y=$\frac{11}{15}$x-$\frac{32}{3}$.
(2)当x=65时,65>50,y=$\frac{11}{15}$×65-$\frac{32}{3}$=37.
答:该用户应交电费37元

点评 本题主要考查一次函数的应用待定系数法等知识,关键考查从一次函数的图象上获取信息的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网