ÌâÄ¿ÄÚÈÝ
5£®£¨1£©·Ö±ðÇó³öx£¼2ºÍx£¾2ʱyÓëxµÄº¯Êý¹ØÏµÊ½£¬
£¨2£©Èç¹ûÿºÁÉýѪҺÖк¬Ò©Á¿Îª4΢¿Ë»ò4΢¿ËÒÔÉÏʱÔÚÖÎÁƼ²²¡Ê±ÊÇÓÐЧµÄ£¬ÄÇôÕâ¸öÓÐЧʱ¼äÊǶ೤£¿
·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝͼÏóÉϵĵãµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨½âµÃ£»
£¨2£©¸ù¾ÝͼÏó¿É֪ÿºÁÉýѪҺÖк¬Ò©Á¿Îª4΢¿ËÊÇÔÚÁ½¸öº¯ÊýͼÏóÉ϶¼ÓУ¬ËùÒÔ°Ñy=4£¬·Ö±ð´úÈëy=3x£¬y=-$\frac{3}{8}$x+$\frac{27}{4}$£¬Çó³öxµÄÖµ¼´¿É½â¾öÎÊÌ⣻
½â´ð ½â£º£¨1£©µ±x¡Ü2ʱ£¬Éèy=k1x£¬
°Ñ£¨2£¬6£©´úÈëÉÏʽ£¬µÃk1=3£¬
¡àx¡Ü2ʱ£¬y=3x£»
µ±x£¾2ʱ£¬Éèy=k2x+b£¬
°Ñ£¨2£¬6£©£¬£¨10£¬3£©´úÈëÉÏʽ£¬$\left\{\begin{array}{l}{2{k}_{2}+b=6}\\{10{k}_{2}+b=3}\end{array}\right.$
µÃk2=-$\frac{3}{8}$£¬b=$\frac{27}{4}$£®
¡àx¡Ý2ʱ£¬y=-$\frac{3}{8}$x+$\frac{27}{4}$£®
£¨2£©°Ñy=4´úÈëy=3x£¬µÃx1=$\frac{4}{3}$£¬
°Ñy=4´úÈëy=-$\frac{3}{8}$x+$\frac{27}{4}$£¬µÃx2=$\frac{22}{3}$£®
Ôòx2-x1=6Сʱ£®
´ð£ºÕâ¸öÓÐЧʱ¼äΪ6Сʱ£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÀûÓÃÒ»´Îº¯ÊýµÄÄ£Ðͽâ¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦ºÍ¶ÁͼÄÜÁ¦£®ÒªÏȸù¾ÝÌâÒâÁгöº¯Êý¹ØÏµÊ½£¬ÔÙ´úÊýÇóÖµ£®½âÌâµÄ¹Ø¼üÊÇÒª·ÖÎöÌâÒâ¸ù¾Ýʵ¼ÊÒâÒå׼ȷµÄÁгö½âÎöʽ£¬ÔٰѶÔÓ¦Öµ´úÈëÇó½â£¬²¢»á¸ù¾ÝͼʾµÃ³öËùÐèÒªµÄÐÅÏ¢£®
| A£® | 120¡ã | B£® | 90¡ã | C£® | 100¡ã | D£® | 30¡ã |
| A£® | a-b£¾0 | B£® | a+b£¾0 | C£® | b-a£¾0 | D£® | -a-b£¾0 |