ÌâÄ¿ÄÚÈÝ
1£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=-x2-4x+5½»xÖáÓÚµãA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬½»yÖáÓÚµãC£¬µãDΪÅ×ÎïÏߵĶ¥µã£¬Á¬½ÓAD£®£¨1£©ÇóÖ±ÏßADµÄ½âÎöʽ£®
£¨2£©µãE£¨m£¬0£©¡¢F£¨m+1£¬0£©ÎªxÖáÉÏÁ½µã£¬ÆäÖУ¨-5£¼m£¼-3.5£©EE¡ä¡¢FF¡ä·Ö±ðƽÐÐÓÚyÖᣬ½»Å×ÎïÏßÓÚµãE¡äºÍF¡ä£¬½»ADÓÚµãM¡¢N£¬µ±ME¡ä+NF¡äµÄÖµ×î´óʱ£¬ÔÚyÖáÉÏÕÒÒ»µãR£¬Ê¹µÃ|RE¡ä-RF¡ä|Öµ×î´ó£¬ÇëÇó³öµãRµÄ×ø±ê¼°|RE¡ä-RF¡ä|µÄ×î´óÖµ£®
£¨3£©Èçͼ2£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷PACÊÇÒÔACΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬Èô´æÔÚ£¬Çë³öµãPµÄ×ø±ê¼°¡÷PACµÄÃæ»ý£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽÇóµÃµãA¡¢DµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨À´ÇóÖ±ÏßADµÄ½âÎöʽ¼´¿É£»
£¨2£©¸ù¾ÝƽÐÐÏßµÄÐÔÖʺͺ¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷Ò×µÃME¡ä+NF¡ä=-m2-7m-10-m2-9m-18=2m2-16m-28£»½áºÏ¶þ´Îº¯Êý×îÖµµÄÇ󷨺ÍÁ½µã¼äÏß¶Î×î¶ÌµÃµ½£ºÒªÊ¹|RE¡ä-RF¡ä|Öµ×î´ó£¬ÔòµãE¡ä¡¢F¡ä¡¢RÈýµãÔÚÒ»ÌõÖ±ÏßÉÏ£¬Ö»ÐèÇóµÃµãE¡ä¡¢F¡äµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÍÆÖªÖ±ÏßE¡äF¡ä¹ØÏµÊ½£¬ÓɸùØÏµÊ½À´ÇóµãRµÄ×ø±ê¼´¿É£»
£¨3£©µ±PA=PCʱ£¬µãPÔÚÏß¶ÎACµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬½áºÏÈý½ÇÐεÄÃæ»ý¹«Ê½½øÐнâ´ð£®
½â´ð
½â£º£¨1£©Èçͼ1£¬¡ßy=-x2-4x+5=-£¨x+5£©£¨x-1£©»òy=-£¨x+2£©2+9£¬
¡àA£¨-5£¬0£©£¬B£¨1£¬0£©£¬D£¨-2£¬9£©£®
ÉèÖ±ÏßADµÄ½âÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£¬°ÑA¡¢DµÄ×ø±ê´úÈ룬µÃ
$\left\{\begin{array}{l}{-5k+b=0}\\{-2k+b=9}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=3}\\{b=15}\end{array}\right.$£®
¹ÊÖ±ÏßADµÄ½âÎöʽΪ£ºy=3x+15£»
£¨2£©Èçͼ1£¬¡ßEE¡ä¡ÎyÖᣬFF¡ä¡ÎyÖᣬE£¨m£¬0£©¡¢F£¨m+1£¬0£©£¬
¡àE£¨m£¬-m2-4m+5£©¡¢F£¨m+1£¬-£¨m+1£©2-4£¨m+1£©+5£©£¬M£¨m£¬3m+15£©£¬N£¨m+1£¬3£¨m+1£©+15£©£¬
¡àME¡ä=-m2-4m+5-£¨3m+15£©=-m2-7m-10£¬NF¡ä=-m2-9m-18£¬
¡àME¡ä+NF¡ä=-m2-7m-10-m2-9m-18=2m2-16m-28£®
¡ß-2£¼0£¬
¡àm=-$\frac{-16}{2¡Á£¨-2£©}$=-4£¬
¡àME¡ä+NF¡äÓÐ×î´óÖµ£¬´ËʱE¡ä£¨-4£¬5£©£¬F¡ä£¨-3£¬8£©£¬
Ҫʹ|RE¡ä-RF¡ä|Öµ×î´ó£¬ÔòµãE¡ä¡¢F¡ä¡¢RÈýµãÔÚÒ»ÌõÖ±ÏßÉÏ£¬
¡àÉèÖ±ÏßE¡äF¡ä£ºy=kx+b£¨k¡Ù0£©£¬Ôò
$\left\{\begin{array}{l}{-3k+b=8}\\{-4k+b=5}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=3}\\{b=17}\end{array}\right.$£¬
¡àÖ±ÏßE¡äF¡ä£ºy=3x+17£¨k¡Ù0£©£®
µ±x=0ʱ£¬y=17£¬ÔòµãRµÄ×ø±êÊÇ£¨0£¬17£©£®
´Ëʱ£¬|RE¡ä-RF¡ä|µÄ×î´óֵΪ$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$£»
£¨3£©Èçͼ2£¬ÉèµãP£¨x£¬-x2-4x+5£©£®![]()
µ±PA=PCʱ£¬µãPÔÚÏß¶ÎACµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬
¡ßOC=OA£¬
¡àµãOÔÚÏß¶ÎACµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬
¡àµãPÔÚ¡ÏAOCµÄ½Çƽ·ÖÏßÉÏ£¬
¡à-x=-x2-4x+5£¬
½âµÃx1=$\frac{-3+\sqrt{29}}{2}$£¬x2=$\frac{-3-\sqrt{29}}{2}$£¬
¡àP£¨$\frac{-3-\sqrt{29}}{2}$£¬$\frac{3+\sqrt{29}}{2}$£©£¬P¡ä£¨$\frac{-3+\sqrt{29}}{2}$£¬$\frac{3-\sqrt{29}}{2}$£©£®
¡àPH=OP-OH=$\frac{\sqrt{58}-2\sqrt{2}}{2}$£¬P¡äH=OP¡ä+OH=$\frac{\sqrt{58}+2\sqrt{2}}{2}$£¬
¡àS¡÷PAC=$\frac{1}{2}$AC•PH=$\frac{1}{2}$¡Á5$\sqrt{2}$¡Á$\frac{\sqrt{58}-2\sqrt{2}}{2}$=$\frac{5\sqrt{29}-10}{2}$»òS¡÷PAC=$\frac{1}{2}$AC•P¡äH=$\frac{1}{2}$¡Á5$\sqrt{2}$¡Á$\frac{\sqrt{58}+2\sqrt{2}}{2}$=$\frac{5\sqrt{29}+10}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣮ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓдý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬¶þ´Îº¯Êý×îÖµµÄÇó·¨ÒÔ¼°Èý½ÇÐεÄÃæ»ý¼ÆË㣮ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
| A£® | º¯ÊýÖµËæ×Ô±äÁ¿µÄÔö´ó¶ø¼õÉÙ | |
| B£® | ¶¯µã£¨3-a£¬a£©Ò»Ö±ÔÚÖ±Ïßy=-x+3ÉÏ | |
| C£® | Ö±Ïßy=-x+3Óë×ø±êÖáΧ³ÉµÄÈý½ÇÐÎÖܳ¤ÊÇ$3+3\sqrt{2}$ | |
| D£® | Ö±Ïßy=-x+3²»¾¹ýµÚÈýÏóÏÞ |
| A£® | 36¡ã | B£® | 60¡ã | C£® | 72¡ã | D£® | 108¡ã |