题目内容

下列语句错误的是( )

A. 锐角的补角一定是钝角 B. 一个锐角和一个钝角一定互补

C. 互补的两角不能都是钝角 D. 互余且相等的两角都是45°

B 【解析】A. ∵锐角小于90°,∴ 锐角的补角一定是钝角,故正确; B. ∵如:30°+100°=130°,∴一个锐角和一个钝角不一定互补,故不正确; C. ∵如果两个角都是钝角,则其和就大于180°,∴互补的两角不能都是钝角,故正确; D. ∵互余且相等的两角都是45°,故正确; 故选B.
练习册系列答案
相关题目

如图,已知点P为∠MON内一点,点P与点A关于直线ON对称,点P与点B关于直线OM对称.连接AB,交ON于D点,交OM于C点,若AB长为15 cm,求△PCD的周长.

15 cm. 【解析】由点P与点A关于直线ON对称,点P与点B关于直线OM对称可得:ON垂直平分AP,OM垂直平分BP;根据垂直平分线的性质可得DA=DP,CP=CB,通过等量代换得到△PCD的周长与AB的数量关系,即可求解. 【解析】 ∵点P与点A关于直线ON对称,点P与点B关于直线OM对称, ∴ON垂直平分AP,OM垂直平分BP, ∴DA=DP,CP=CB, ∴...

如图,矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:△AEF∽△DCE;

(2)求tan∠ECF的值.

(1)答案见解析;(2) 【解析】(1)根据矩形的性质可知∠A="∠D" =90°,再根据三角形的内角和为180°,可知∠DCE+∠DEC=900,由已知EF⊥EC,可得:∠AEF+∠DEC=900得出∠DCE=∠AEF,即可证明⊿AEF∽⊿DCE (2)由(1)可知:⊿AEF∽⊿DCE ∴= 在矩形ABCD中,E为AD 的中点。 AB=2AD ∴ DC=AB=4AE ∴ ...

根据下列证明过程填空:

如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C

证明:∵BD⊥AC,EF⊥AC

∴∠2=∠3=90°( )

∴BD∥EF ( )

∴∠4=_____( )

∵∠1=∠4

∴∠1=_____( )

∴DG∥BC( )

∴∠ADG=∠C( )

见解析 【解析】试题分析:解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用. 试题解析:∵BD⊥AC,EF⊥AC(已知), ∴∠2=∠3=90°, ∴BD∥EF(同位角相等,两直线平行), ∴∠4=∠5(两直线平行,同位角相等); ∵∠1=∠4(已知), ∴∠1=∠5(等量代换), ∴DG∥BC(内错角相...

如图,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于(  )

A. 40° B. 45° C. 55° D. 65°

A 【解析】∵EF⊥AB于O,∠COE=50°, ∴∠AOC=90°-50°=40°, ∵∠AOC与∠BOD是对顶角, ∴∠BOD=∠AOC=40°; 故选A。

如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.

40° 【解析】 延长AE、DC相交于点F. ∵AB∥CD,∠1=100°, ∴∠F=180°-100°=80°, ∴∠α=∠2-∠F=120°-80°=40°.

已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.

160° 【解析】 ∵OC平分∠AOB,∠AOB=40°, ∴, ∴∠AOC的补角=180°-20°=160°.

已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.

p=3,q=1. 【解析】试题分析:根据整式的乘法,化简完成后,根据不含项的系数为0求解即可. 试题解析:∵(x2+px+8)(x2﹣3x+q) =x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q =x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q. ∵乘积中不含x2与x3项, ∴p﹣3=0,q﹣3p+8=0, ∴p=...

下列图形中,轴对称图形有( )

A. 1个 B. 2个 C. 3个 D. 4个

A 【解析】【解析】 给出的四个图形中,只有第一个是轴对称图形,其余虽然外形是,但是其内部图形不是,故选A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网