题目内容
3.(1)计算:($\sqrt{\frac{9}{2}}$-2$\sqrt{3}$)×$\sqrt{2}$+6;(2)|2$\sqrt{2}$-3|+($\sqrt{2}$)-1-(π-$\sqrt{2}$)0-$\sqrt{18}$;
(3)解方程组:$\left\{\begin{array}{l}{\frac{x+1}{3}=\frac{5x-y}{5}}\\{3y=4x+1}\end{array}\right.$.
分析 (1)先算乘法,再算加减即可;
(2)先根据0指数幂及负整数指数幂的计算法则分别计算出各数,再根据实数混合运算的法则进行计算即可;
(3)先把方程组中的方程整理为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.
解答 解:(1)原式=$\sqrt{9}$-2$\sqrt{6}$+6
=3-2$\sqrt{6}$+6
=9-2$\sqrt{6}$;
(2)原式=2$\sqrt{2}$-3+$\frac{\sqrt{2}}{2}$-1-3$\sqrt{2}$
=-4-$\frac{\sqrt{2}}{2}$;
(3)原方程组可化为$\left\{\begin{array}{l}{10x-3y=5①}\\{3y=4x+1②}\end{array}\right.$,
①+②得,10x=5+4x+1,
解得x=1,
把x=1代入②得,3y=4+1,
解得y=$\frac{5}{3}$.
故方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=\frac{5}{3}}\end{array}\right.$.
点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
练习册系列答案
相关题目