题目内容

2.如图,在等边三角形ABC中,P是△ABC的一点,PA=1,PB=$\sqrt{7}$,PC=2$\sqrt{2}$,求∠APB的大小.

分析 将△BCP绕B逆时针旋转60°,点C和A重合,P到P′,连接PP′,得出等边三角形PBP′,求出∠BPP′=60°,推出直角三角形APP′,求出∠APP′,即可求出答案.

解答 解:将△BCP绕B逆时针旋转60°,点C和A重合,P到P′,连接PP′,
∵∠PBP′=60°,BP=BP′,
∴△PBP′是等边三角形,
∴∠BPP′=60°,
∴PP′=PB=$\sqrt{7}$,AP′=PC=2$\sqrt{2}$,PA=1,
∵PP′2+PA2=AP′2
∴∠APP′=90°,
∴∠APB=60°+90°=150°.

点评 本题考查了等边本题考查了旋转的性质,勾股定理的逆定理,解此题的关键是正确作辅助线,把PA、PB、PC放在“一个三角形”中,主要考查学生的思维能力和运用性质进行推理的能力.

练习册系列答案
相关题目
10.数学问题:计算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数字问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面积是$\frac{1}{{2}^{n}}$.
根据第n次分割图可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:计算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:根据前面探究结果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.

推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整数,且m≥2,n≥1)
拓广应用:计算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网