题目内容

12.某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:
  甲种图书 乙种图书
 进价(元/本) 16 28
 售价(元/本) 26 40
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的函数知识来解决)

分析 (1)利用购书款不高于2224元,预计这100本图书全部售完的利润不低于1100元,结合表格中数据得出不等式组,求出即可;
(2)根据乙种书利润较高,故乙种书购进越多利润最大,故购进甲种书:48种,乙种书:52本利润最大求出即可;

解答 解:(1)设购进甲种图书x本,则购进乙书(100-x)本,根据题意得出:
$\left\{\begin{array}{l}{16x+28(100-x)≤2224}\\{10x+12(100-x)≥1100}\end{array}\right.$,
解得:48≤x≤50.
故有3种购书方案:甲种书:48本,乙种书:52本;甲种书:49本,乙种书:51本;甲种书:50本,乙种书:50本;

(2)根据乙种书利润较高,故乙种书购进越多利润最大,
故购进甲种书:48种,乙种书:52本利润最大为:48×(26-16)+52×(40-28)=1104(元).

点评 此题主要考查了不等式组的应用以及二元一次方程的应用以及最佳方案问题,正确得出不等式关系是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网