题目内容
15.分析 首先由三角形的面积求得AC=BC=6,可设时间为x分钟,依题意得CF=x,则CE=6-2x,利用勾股定理列方程求解.
解答 解:如图,![]()
∵△ABC为等腰三角形,面积为18平方千米,
∴AC=BC,$\frac{1}{2}$AC•BC=18,
∴AC=BC=6,
设x分钟后,两人相距2$\sqrt{2}$千米,依题意得CF=x,则CE=6-2x,
∴x2+(6-2x)2=(2$\sqrt{2}$)2.
解得x1=$\frac{1}{2}$,x2=$\frac{14}{5}$,
答:则$\frac{1}{2}$或$\frac{14}{5}$分钟后,两人相距2$\sqrt{2}$千米.
故答案为:$\frac{1}{2}$或$\frac{14}{5}$.
点评 此题考查一元二次方程的实际运用,勾股定理的运用,利用勾股定理建立方程是解决问题的关键.
练习册系列答案
相关题目
5.一个多边形的内角和的度数是外角和的2倍,则这个多边形是( )
| A. | 三角形 | B. | 四边形 | C. | 六边形 | D. | 八边形 |