题目内容
16.分析 首先根据CD平分∠ACB交AB于点D,可得∠DCE=∠DCF;再根据DE⊥AC,DF⊥BC,可得∠DEC=∠DFC=90°,然后根据全等三角形的判定方法,判断出△CED≌△CFD,即可判断出DF=DE;最后根据三角形的面积=底×高÷2,求出△BCD的面积是多少即可.
解答 解:∵CD平分∠ACB交AB于点D,
∴∠DCE=∠DCF,
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°,
在△DEC和△DFC中,
$\left\{\begin{array}{l}{∠DCE=∠DCF}\\{∠DEC=∠DFC}\\{CD=CD}\end{array}\right.$(AAS)
∴△DEC≌△DFC,
∴DF=DE=2,
∴S△BCD=BC×DF÷2
=4×2÷2
=4
答:△BCD的面积是4.
故答案为:4.
点评 (1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.
(2)此题还考查了全等三角形的判定和性质的应用,以及三角形的面积的求法,要熟练掌握.
练习册系列答案
相关题目
11.下列各组线段中,能够组成直角三角形的一组是( )
| A. | 1,2,3 | B. | 2,3,4 | C. | 4,5,6 | D. | 1,$\sqrt{2}$,$\sqrt{3}$ |