题目内容

11.已知,如图,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,求△ABC的面积.

分析 将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.

解答 解:∵△ABC为等边三角形,
∴BA=BC,
可将△BPC绕点B逆时针旋转60°得△BEA,
连EP,且延长BP,作AF⊥BP于点F.如图,
∴BE=BP=4,AE=PC=5,∠PBE=60°,
∴△BPE为等边三角形,
∴PE=PB=4,∠BPE=60°,
在△AEP中,AE=5,AP=3,PE=4,
∴AE2=PE2+PA2
∴△APE为直角三角形,且∠APE=90°,
∴∠APB=90°+60°=150°.
∴∠APF=30°,
∴在直角△APF中,AF=$\frac{1}{2}$AP=$\frac{3}{2}$,PF=$\frac{\sqrt{3}}{2}$AP=$\frac{3\sqrt{3}}{2}$.
∴在直角△ABF中,AB2=BF2+AF2=(4+$\frac{3\sqrt{3}}{2}$)2+($\frac{3}{2}$)2=25+12$\sqrt{3}$.
则△ABC的面积是$\frac{\sqrt{3}•A{B}^{2}}{4}$=$\frac{\sqrt{3}(25+12\sqrt{3})}{4}$=$\frac{25\sqrt{3}+36}{4}$.

点评 本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的判定与性质以及勾股定理的逆定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网