题目内容
1.有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?( )| A. | 36 | B. | 42 | C. | 45 | D. | 48 |
分析 根据题意画出图形,得出2y+x=27,3x=15,求出x和y,即可得出结果.
解答
解:如图所示:根据题意得:
2y+x=27,3x=15,
其他都不符合三角形条件,解得:x=5,y=11,
∴正角锥所有边的长度和=3x+3y=15+33=48;
故选:D.
点评 本题考查了立体图形;根据题意画出图形,得出关系式是解决问题的关键.
练习册系列答案
相关题目
18.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
10.
如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
| A. | BH垂直平分线段AD | B. | AC平分∠BAD | ||
| C. | S△ABC=BC•AH | D. | AB=AD |
11.
某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,m=0.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有3个交点,所以对应的方程x2-2|x|=0有3个实数根;
②方程x2-2|x|=2有2个实数根;
③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是-1<a<0.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
| x | … | -3 | -$\frac{5}{2}$ | -2 | -1 | 0 | 1 | 2 | $\frac{5}{2}$ | 3 | … |
| y | … | 3 | $\frac{5}{4}$ | m | -1 | 0 | -1 | 0 | $\frac{5}{4}$ | 3 | … |
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有3个交点,所以对应的方程x2-2|x|=0有3个实数根;
②方程x2-2|x|=2有2个实数根;
③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是-1<a<0.