题目内容

确定下列二次函数图象的开口方向、对称轴和顶点坐标:
(1)y=5(x-1)2
(2)y=2x2-4x-1;
(3)y=3x2-6x+2;
(4)y=(x+1)(x-2);
(5)y=-3(x+3)(x+9).
考点:二次函数的性质
专题:
分析:结合二次函数的解析,把其化为顶点式则可得出其开口方程、对称轴和顶点坐标.
解答:解:
(1)∵y=5(x-1)2
∴二次函数的图象开口向上,对称轴为x=1,顶点坐标为(1,0);
(2)∵y=2x2-4x-1=2(x-1)2-3,
∴二次函数的图象开口向上,对称轴为x=1,顶点坐标为(1,-3);
(3)∵y=3x2-6x+2=3(x-1)2-1,
∴二次函数的图象开口向上,对称轴为x=1,顶点坐标为(1,-1);
(4)∵y=(x+1)(x-2)=x2-x-2=(x-
1
2
2-
9
4

∴二次函数的图象开口向上,对称轴为x=
1
2
,顶点坐标为(
1
2
,-
9
4
);
(5)∵y=-3(x+3)(x+9)=-3x2-36x-81=-3(x+6)2+27,
∴二次函数的图象开口向下,对称轴为x=1,顶点坐标为(-6,27).
点评:本题主要考查二次函数的开口方向、对称轴方程及顶点坐标,掌握二次函数的顶点式y=a(x-h)2+k是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网