题目内容
考点:平行线分线段成比例
专题:计算题
分析:作DM∥AE于M,DN∥AF于N,如图,根据平行线分线段成比例,由DM∥AE得到
=
=
,于是设BM=2x,则ME=3x,BE=5x,于是得到CF=15x,EF=10x,
再由GE∥DM得到
=
=
,于是设DG=3t,则DC=28t,接着利用DN∥AF得到
=
=
,则可计算出NF=9x,然后利用HF∥DN得到
=
,可计算出DH=
t,再分别计算出GH=DH-DG=
t,CH=CD-DH=
t,最后计算CH:HG:DG的值.
| BM |
| ME |
| BD |
| DA |
| 2 |
| 3 |
再由GE∥DM得到
| DG |
| DC |
| ME |
| MC |
| 3 |
| 28 |
| BN |
| NF |
| BD |
| DA |
| 2 |
| 3 |
| DH |
| DC |
| NF |
| NC |
| 21 |
| 2 |
| 15 |
| 2 |
| 35 |
| 2 |
解答:解:作DM∥AE于M,DN∥AF于N,如图,
∵DM∥AE,
∴
=
=
,
设BM=2x,则ME=3x,BE=5x,
∵CF:EF:BE=3:2:1,
∴CF=15x,EF=10x,
∵GE∥DM,
∴
=
=
=
,
设DG=3t,则DC=28t,
∵DN∥AF,
∴
=
=
,
而BN+NF=BF=15x,
∴NF=9x,
∵HF∥DN,
∴
=
,即
=
=
,
∴DH=
t,
∴GH=DH-DG=
t-3t=
t,CH=CD-DH=28t-
t=
t,
∴CH:HG:DG=
t:
t:3t=35:15:6.
∵DM∥AE,
∴
| BM |
| ME |
| BD |
| DA |
| 2 |
| 3 |
设BM=2x,则ME=3x,BE=5x,
∵CF:EF:BE=3:2:1,
∴CF=15x,EF=10x,
∵GE∥DM,
∴
| DG |
| DC |
| ME |
| MC |
| 3x |
| 3x+10x+15x |
| 3 |
| 28 |
设DG=3t,则DC=28t,
∵DN∥AF,
∴
| BN |
| NF |
| BD |
| DA |
| 2 |
| 3 |
而BN+NF=BF=15x,
∴NF=9x,
∵HF∥DN,
∴
| DH |
| DC |
| NF |
| NC |
| DH |
| 28t |
| 9x |
| 9x+15x |
| 3 |
| 8 |
∴DH=
| 21 |
| 2 |
∴GH=DH-DG=
| 21 |
| 2 |
| 15 |
| 2 |
| 21 |
| 2 |
| 35 |
| 2 |
∴CH:HG:DG=
| 35 |
| 2 |
| 15 |
| 2 |
点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
练习册系列答案
相关题目