题目内容
4.已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.(1)初步尝试:若点P与点A重合时(如图1),BD+BE=5.
(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?
(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)
分析 (1)先判断出∠BPE=∠CAD,进而判断出△PBE≌△ACD,即可得出BD+BE=BC=5;
(2)先构造出等边三角形,再判断出∠BPE=∠FPD,进而判断出△PBE≌△PFD,即可得出BD+BE=BF=4;
(3)类似于(2)的方法判断出△PBE≌△PFD得出BE=DF,再判断出BF=2BG,利用用锐角三角函数求出BG=a•cos55°,即可BD-BE=BF=2a•cos55°.
解答 解:(1)∵△ABC和△PDE是等边三角形,
∴PE=PD,AB=AC,∠DPE=∠CAB=60°,
∴∠BPE=∠CAD,
∴△PBE≌△ACD,
∴BE=CD,
∴BD+BE=BD+CD=BC=5,
故答案为5;
(2)如图2,
过点P作PF∥AC交BC于F,
∴△FPB是等边三角形,
∴BF=PF=PB=AB-AP=4,∠BPF=60°,
∵△PDE是等边三角形,
∴PD=PE,∠DPE=60°,
∴∠BPE=∠FPD,
∴△PBE≌△PFD,
∴BE=DF,
∴BD+BE=BD+DF=BF=4;
(3)如图3,
过点P作PF∥AC交BC于F,
∴∠BPF=∠BAC=70°,∠PFB=∠C,
∵AB=AC,∠BAC=70°,
∴∠ABC=∠C=55°,
∴∠PFB=∠C=∠PBF=55°,
∴PF=PB=a,
∵∠BPF=∠DPE=70°,
∴∠DPF=∠EPB,
∵PD=PE,
∴△PBE≌△PFD,
∴BE=DF,
过点P作PG⊥BC于G,
∴BF=2BG,
在Rt△BPG中,∠PBD=55°,
∴BG=BP•cos∠PBD=a•cos55°,
∴BF=2BG=2a•cos55°,
∴BD-BE=BD-DF=BF=2a•cos55°.
点评 此题是三角形综合题,主要考查了等边三角形的性质和判定,等腰三角形的判定和性质,锐角三角函数,解(1)的关键是判断出△PBE≌△ACD,解(2)的关键是构造出等边三角形,解(3)的关键是构造直角三角形求出BG,是一道中等难度的题目.
| A. | B. | C. | D. |
| A. | 135° | B. | 140° | C. | 145° | D. | 150° |
| A. | 3+$\sqrt{2}$ | B. | -3+$\sqrt{2}$ | C. | $\frac{3+\sqrt{2}}{4}$ | D. | $\frac{3+\sqrt{2}}{7}$ |