题目内容

计算:
(1)
x-2
x2
÷(1-
2
x

(2)
3a+6
a2-6a+9
÷(a+2)×
9-a2
(a+2)(a+3)
 
(3)(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x-4
x
 
(4)
1
x-1
-
x-3
x2-1
×
x2+2x+1
x2-6x+9
考点:分式的混合运算
专题:
分析:(1)先算括号里面的,再将除法转化为乘法计算;
(2)将分子分母因式分解,再将除法转化为乘法解答;
(3)将括号内的部分通分后相加,再将除法转化为乘法解答;
(4)将分子分母因式分解,约分后相减即可.
解答:解:(1)原式=
x-2
x2
÷
x-2
x

=
x-2
x2
x
x-2

=
1
x

(2)原式=
3(a+2)
(a-3)2
1
a+2
(3-a)(3+a)
(a+2)(a+3)

=-
3
a2-a-6

(3)(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x-4
x

=[
x+2
x(x-2)
-
x-1
(x-2)2
]•
x
x-4

=[
(x+2)(x-2)
x(x-2)2
-
x2-x
x(x-2)2
]•
x
x-4

=
x2-4-x2+x
x(x-2)2
x
x-4

=
x-4
x(x-2)2
x
x-4

=
x
x2-4x+4

(4)
1
x-1
-
x-3
x2-1
×
x2+2x+1
x2-6x+9

=
1
x-1
-
x-3
(x-1)(x+1)
×
(x+1)2
(x-3)2

=
1
x-1
-
x+1
(x-1)(x-3)

=
x+1
(x-1)(x-3)
-
x+1
(x-1)(x-3)

=0.
点评:本题考查了分式的混合运算,熟悉因式分解、熟悉分式的乘除法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网