题目内容
4.分析 作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得$\widehat{AC}$=$\widehat{AC′}$,然后求出C′D为直径,从而得解.
解答
解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,
此时,点M为CM+DM的最小值时的位置,
由垂径定理,$\widehat{AC}$=$\widehat{AC′}$,
∴$\widehat{BD}$=$\widehat{AC′}$,
∵$\widehat{AC}$=$\widehat{CD}$=$\widehat{BD}$,AB为直径,
∴C′D为直径,
∴CM+DM的最小值是16.
故答案是:16.
点评 本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键.
练习册系列答案
相关题目
14.已知x+y=2,xy=-1,则x2+y2的值为( )
| A. | 4 | B. | 2 | C. | -2 | D. | 6 |