题目内容
如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有 .
485.
【解析】
考点:探索规律题(图形的变化类).
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).
(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
如图1,将由5个边长为1的小正方形组成的十字形纸板沿虚线剪拼成一个大正方形,需剪4
刀。
思考发现:大正方形的面积等于5个小正方形的面积和,大正方形的边长等于_______。
实践操作:如图2,将网格中5个边长为1的小正方形组成的图形纸板剪拼成一个大正方形,要求剪
两刀,画出剪拼的痕迹。
智力开发:将网格中的5个边长为1的正方形组成的十字形纸板,要求只剪2刀也拼成一个大正方形。
在图中用虚线画出剪拼的痕迹。
初三年级某班有54名学生,所在教室有6行9列座位,用表示第行第列的座位,新学期准备调整座位,设某个学生原来的座位为,如果调整后的座位为,则称该生作了平移,并称为该生的位置数。若当时,取得最小值,则该生位置数的最大值为 。
观察下列各数的个位数字的变化规律:21=2,22=4,23=8,24=16,25=32,26=64……通过观察,你认为22011的个位数字应该是
如图,在直角坐标系中,已知点A(,0)、B(,3),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为 。
如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.
(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.
如图(6),AD∥BC, ∠C=30 °,∠ADB:∠BDC=1:2,则∠ADB的度数是 。
如图24,已知:AB∥CD,AE平分∠BAC,CE平分∠ACD,请说明:AE⊥CF.