题目内容
8.解不等式组$\left\{\begin{array}{l}{3x+1≤2(x+1)}\\{-x<5x+12}\end{array}\right.$,并写出它的整数解.分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.
解答 解:解不等式3x+1≤2(x+1),得:x≤1,
解不等式-x<5x+12,得:x>-2,
则不等式组的解集为:-2<x≤1,
则不等式组的整数解为-1、0、1.
点评 本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
练习册系列答案
相关题目
13.
小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )
| A. | $\frac{1}{1-sinα}$ | B. | $\frac{1}{1+sinα}$ | C. | $\frac{1}{1-cosα}$ | D. | $\frac{1}{1+cosα}$ |
4.
如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为( )
| A. | 25° | B. | 30° | C. | 50° | D. | 60° |
1.
如图,⊙O的圆心角∠BOC=112°,点D在弦BA的延长线上且AD=AC,则∠D的度数为( )
| A. | 28° | B. | 56° | C. | 30° | D. | 41° |