题目内容

3.求方程2x2+xy-y2=14的整数解.

分析 首先把2x2+xy-y2=14左边分解为(2x-y)(x+y)=14,进一步把14分解成两个整数的乘积,进一步建立方程组得出答案即可.

解答 解:∵2x2+xy-y2=(2x-y)(x+y),14=1×14=(-1)×(-14)=2×7=(-2)×(-7),
∴$\left\{\begin{array}{l}{2x-y=1}\\{x+y=14}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=14}\\{x+y=1}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=-1}\\{x+y=-14}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=-14}\\{x+y=-1}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=2}\\{x+y=7}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=7}\\{x+y=2}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=-2}\\{x+y=-7}\end{array}\right.$,$\left\{\begin{array}{l}{2x-y=-7}\\{x+y=-2}\end{array}\right.$
解得$\left\{\begin{array}{l}{x=5}\\{y=9}\end{array}\right.$,$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$,$\left\{\begin{array}{l}{x=-5}\\{y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x=-5}\\{y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$,$\left\{\begin{array}{l}{x=-3}\\{y=1}\end{array}\right.$.

点评 此题考查因式分解与二元一次方程组的实际运用,掌握因式分解的方法,注意分类讨论思想的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网