题目内容

如图,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=
 
度.
考点:翻折变换(折叠问题),角的计算
专题:
分析:由折叠的性质可得出∠ABC=∠CBA',∠A'BD=∠DBE,从而可得出∠CBD=∠CBA'+∠A'BD=
1
2
∠ABE,从而可得出答案.
解答:解:由折叠的性质:∠CBA=∠CBA′,∠DBE=∠DBE′,
又∵∠CBA+∠CBA′+∠DBE+∠DBE′=180°,
∴∠CBA′+∠DBE′=90°,
∴∠CBD=∠CBA′+∠DBE′=90°.
故答案为:90.
点评:此题考查了折叠的性质,解答本题的关键是根据折叠的性质得出∠CBA=∠CBA′,∠DBE=∠DBE′,难度一般,注意仔细观察所给图形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网