题目内容

11.将一副三角板拼成如图所示的图形,过点C作CF∥AB交DE于点F.
(1)求证:CF平分∠DCE;
(2)求∠DFC的度数.

分析 (1)由已知的一副三角板可知:△ABC是等腰直角三角形,则∠3=∠B=45°,由平行线所截得内错角相等得:∠1=∠3=45°,所以∠2=45°,从而得出结论;
(2)根据外角定理可得:∠DFC=∠E+∠2.

解答 证明:(1)∵△ABC是等腰直角三角形,
∴∠3=∠B=45°,
∵CF∥AB,
∴∠3=∠1=45°,
∵∠DCB=90°,
∴∠2=∠DCB-∠1=90°-45°=45°,
∴∠1=∠2,
∴CF平分∠DCE;
(2)在△EFC中,∠E=60°,
∴∠DFC=∠E+∠2=60°+45°=105°.

点评 本题考查了特殊的直角三角形和平行线的性质,还考查了三角形的外角定理;熟练掌握:①两直线平行同位角相等,②两直线平行,同旁内角互补;③两直线平行,内错角相等;④三角形的一个外角等于与它不相邻的两个内角的和.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网