题目内容
小明在做掷一枚普通的正方体骰子实验,请写出这个实验中一个可能发生的事件:________
如图,在矩形ABCD中,P、Q分别是BC、DC上的点,E、F分别是AP、PQ的中点.BC=12, DQ =5,在点P从B移动到C(点Q不动)的过程中,则下列结论正确的是 ( )
A. 线段EF的长逐渐增大,最大值是13 B. 线段EF的长逐渐减小,最小值是6.5
C. 线段EF的长始终是6.5 D. 线段EF的长先增大再减小,且6.5≤EF≤13
如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′= .
小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得1分,否则小亮得1分.
(1)用画树状图或列表的方法求出小明获胜的概率;
(2)这个游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?
由1,2,3组成不重复的两位数,十位数字是2的概率是________.
一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )
A. B. C. D.
现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是( )
已知菱形ABCD的两条对角线相交于点O,AC=4,BD=2,则菱形ABCD的周长是___________.
如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.
(1)求证:四边形ABCD是平行四边形;
(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.
【答案】(1)(2)见解析
【解析】试题分析:(1)已知AB∥CD,根据两直线平行,内错角相等可得∠ABD=∠CDB,由∠AEF=∠CFB,根据平角的定义可得∠AEB=∠CFD,利用ASA证得△ABE≌△CDF,根据全等三角形的性质可得AB=CD,由AB∥CD,根据一组对边平行且相等的四边形为平行四边形即可得四边形ABCD是平行四边形;(2)平行四边形AECF是矩形,根据平行四边形的性质可得OB=OD ,OA=OC=AC,由BE=DF证得OE=OF,根据对角线互相平分的四边形为平行四边形可判定四边形AECF是平行四边形,再证得AC=EF,根据对角线相等的平行四边形是矩形即可判定平行四边形AECF是矩形.
试题解析:
(1)证明:∵AB∥CD,
∴∠ABD=∠CDB,
又∵∠AEF=∠CFB,
∴∠AEB=∠CFD,
又∵BE=DF,
∴△ABE≌△CDF(ASA),
∴AB=CD,
又∵AB∥CD,
∴四边形ABCD是平行四边形;
(2) 平行四边形AECF是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴OB=OD ,OA=OC=AC,
∵BE=DF,
∴OB﹣BE=DO﹣DF,
∴OE=OF,
又∵OA=OC,
∴四边形AECF是平行四边形,
又∵AC=2OE,EF=2OE,
∴AC=EF,
∴平行四边形AECF是矩形.
【题型】解答题【结束】23
已知, , 与成正比例, 与成反比例,并且当时, ,当时, .
()求关于的函数关系式.
()当时,求的值.