题目内容

如图,梯形ABCD中,EF过对角线的交点O,且AD∥EF∥BC,AD=m,BC=n,则EF长为
 
考点:平行线分线段成比例
专题:证明题
分析:由于EF∥BC,根据平行线分线段成比例定理的推论可得
OE
BC
=
AE
AB
OF
BC
=
DF
DC
,而AD∥EF∥BC,根据平行线分线段成比例定理可得
AE
AB
=
DF
DC
,从而有
OE
BC
=
OF
BC
,可得OE=OF,即EF=2OE.再根据EF∥BC,可得
OE
BC
=
OA
AC
,同理
OA
OC
=
AD
BC
,根据比例性质可得
OA
AC
=
AD
AD+BC
,即
OA
AC
=
mn
m+n
,于是
OE
BC
=
mn
m+n
,进而可求OE,从而可求EF.
解答:解:如右图,
∵EF∥BC,
OE
BC
=
AE
AB
OF
BC
=
DF
DC

∵AD∥EF∥BC,
AE
AB
=
DF
DC

OE
BC
=
OF
BC

∴OE=OF,
∵EF∥BC,
OE
BC
=
OA
AC

∵AD∥BC,
OA
OC
=
AD
BC

OA
AC
=
AD
AD+BC

OA
AC
=
m
m+n

∴OE=
mn
m+n

∴EF=2OE=
2mn
m+n

故答案是
2mn
m+n
点评:本题考查了平行线分线段成比例定理以及推论,解题的关键是求出OE=OF,以及OE的长,并会使用比例的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网