题目内容
考点:平行线分线段成比例
专题:证明题
分析:由于EF∥BC,根据平行线分线段成比例定理的推论可得
=
,
=
,而AD∥EF∥BC,根据平行线分线段成比例定理可得
=
,从而有
=
,可得OE=OF,即EF=2OE.再根据EF∥BC,可得
=
,同理
=
,根据比例性质可得
=
,即
=
,于是
=
,进而可求OE,从而可求EF.
| OE |
| BC |
| AE |
| AB |
| OF |
| BC |
| DF |
| DC |
| AE |
| AB |
| DF |
| DC |
| OE |
| BC |
| OF |
| BC |
| OE |
| BC |
| OA |
| AC |
| OA |
| OC |
| AD |
| BC |
| OA |
| AC |
| AD |
| AD+BC |
| OA |
| AC |
| mn |
| m+n |
| OE |
| BC |
| mn |
| m+n |
解答:解:如右图,
∵EF∥BC,
∴
=
,
=
,
∵AD∥EF∥BC,
∴
=
,
∴
=
,
∴OE=OF,
∵EF∥BC,
∴
=
,
∵AD∥BC,
∴
=
,
∴
=
,
即
=
,
∴OE=
,
∴EF=2OE=
.
故答案是
.
∵EF∥BC,
∴
| OE |
| BC |
| AE |
| AB |
| OF |
| BC |
| DF |
| DC |
∵AD∥EF∥BC,
∴
| AE |
| AB |
| DF |
| DC |
∴
| OE |
| BC |
| OF |
| BC |
∴OE=OF,
∵EF∥BC,
∴
| OE |
| BC |
| OA |
| AC |
∵AD∥BC,
∴
| OA |
| OC |
| AD |
| BC |
∴
| OA |
| AC |
| AD |
| AD+BC |
即
| OA |
| AC |
| m |
| m+n |
∴OE=
| mn |
| m+n |
∴EF=2OE=
| 2mn |
| m+n |
故答案是
| 2mn |
| m+n |
点评:本题考查了平行线分线段成比例定理以及推论,解题的关键是求出OE=OF,以及OE的长,并会使用比例的性质.
练习册系列答案
相关题目
设a=
-1,则代数式a2+2a-10的值为( )
| 7 |
| A、-3 | ||
| B、-4 | ||
C、-4
| ||
D、-4
|
方程(3x-1)(2x+4)=1的解是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
| A、8:15 | B、9:25 |
| C、13:17 | D、9:16 |