题目内容
18.| A. | B. | C. | D. |
分析 由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.
解答 解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.
故选B.
点评 此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.
练习册系列答案
相关题目
9.
如图,直线y=-x+3与y轴交于点A,与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为( )
| A. | y=$\frac{4}{x}$ | B. | y=-$\frac{4}{x}$ | C. | y=$\frac{2}{x}$ | D. | y=-$\frac{2}{x}$ |
13.
某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
请根据以上图表信息解答下列问题:
(1)频数分布表中的m=24,n=0.3;
(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;
(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是$\frac{1}{10}$.
| 运动项目 | 频数(人数) | 频率 |
| 篮球 | 30 | 0.25 |
| 羽毛球 | m | 0.20 |
| 乒乓球 | 36 | n |
| 跳绳 | 18 | 0.15 |
| 其它 | 12 | 0.10 |
(1)频数分布表中的m=24,n=0.3;
(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;
(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是$\frac{1}{10}$.