题目内容

7.已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时,直接写出线段DG与PC的数量关系DG=2PC;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.

分析 (1)结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.
(2)结论:如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE=PD,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.

解答 解:(1)结论:DG=2PC.
理由:如图1中,作PM⊥AD于M.

∵四边形ABCD是正方形,
∴∠C=∠CDM=∠DMP=90°,
∴四边形DCPM是矩形,
∴PC=DM,
∵PD=PG,PM⊥DG,
∴MG=MD,
∴DG=2PC.
故答案为DG=2PC.

(2)结论:四边形PEFD是菱形.
理由:如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,

∵∠DAF=∠PMG=∠DGH=90°,
∴∠ADF+∠AFD=90°,∠G+∠GDH=90°,
∵∠ADF=∠GDH,
∴∠AFD=∠G,
∵AD=CD,CD=PM,
∴AD=PM,
在△ADF和△MPG中,
$\left\{\begin{array}{l}{∠AFD=∠G}\\{∠FAD=∠PMG}\\{AD=PM}\end{array}\right.$,
∴△ADF≌△MPG,
∴DP=PG=PE=PD,
∵∠FHG=∠EPG=90°,
∴DF∥PE,
∴四边形PEFD是平行四边形,
∵PD=PE,
∴四边形PEFD是菱形.

点评 本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网