ÌâÄ¿ÄÚÈÝ
14£®Èçͼ£¬Ò»Ö»ÎÏÅ£A´ÓÔµã³ö·¢ÏòÊýÖḺ·½ÏòÔ˶¯£¬Í¬Ê±£¬ÁíÒ»Ö»ÎÏÅ£BÒ²´ÓÔµã³ö·¢ÏòÊýÖáÕý·½ÏòÔ˶¯£¬3$\sqrt{2}$Ãëºó£¬Á½ÎÏÅ£Ïà¾à15¸öµ¥Î»³¤¶È£®ÒÑÖªÎÏÅ£A¡¢BµÄËٶȱÈÊÇ1£º4£¬£¨Ëٶȵ¥Î»£ºµ¥Î»³¤¶È/Ã룩£¨1£©Çó³öÁ½¸öÎÏÅ£Ô˶¯µÄËÙ¶È£¬²¢ÔÚÊýÖáÉÏ£¨Í¼1£©±ê³öA¡¢B´ÓÔµã³ö·¢Ô˶¯3$\sqrt{2}$ÃëʱµÄλÖã»
£¨2£©ÈôÎÏÅ£A¡¢B´Ó£¨1£©ÖеÄλÖÃͬʱÏòÊýÖḺ·½ÏòÔ˶¯£¬¼¸Ãëʱ£¬ÔµãÇ¡ºÃ´¦ÔÚÁ½Ö»ÎÏÅ£µÄÕýÖм䣿
£¨3£©ÈôÎÏÅ£A¡¢B´Ó£¨1£©ÖеÄλÖÃͬʱÏòÊýÖḺ·½ÏòÔ˶¯Ê±£¬ÁíÒ»ÎÏÅ£CҲͬʱ´ÓÎÏÅ£BµÄλÖóö·¢ÏòÎÏÅ£AÔ˶¯£¬µ±Óöµ½ÎÏÅ£Aºó£¬Á¢¼´·µ»ØÏòÎÏÅ£BÔ˶¯£¬Óöµ½ÎÏÅ£BºóÓÖÁ¢¼´·µ»ØÏòÎÏÅ£AÔ˶¯£¬Èç´ËÍù·µ£¬Ö±µ½B×·ÉÏAʱ£¬ÎÏÅ£CÁ¢¼´Í£Ö¹Ô˶¯£®ÈôÎÏÅ£CÒ»Ö±ÒÔ2$\sqrt{5}$µ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£¬ÄÇôÎÏÅ£C´Ó¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯£¬ÐÐÊ»µÄ·³ÌÊǶàÉÙ¸öµ¥Î»³¤¶È£¿
·ÖÎö £¨1£©ÉèÎÏÅ£AµÄËÙ¶ÈΪxµ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ4xµ¥Î»³¤¶È/Ã룬¸ù¾ÝÁ½ÎÏÅ£Ïà¾à15¸öµ¥Î»Áгö·½³ÌÇó½â¼´¿É£»
£¨2£©¸ù¾ÝÏà·´ÊýµÄ¶¨Ò壬ÎÏÅ£A¡¢Bµ½ÔµãµÄ¾àÀëÏàµÈ£¬·Ö±ð±íʾ³öÎÏÅ£A¡¢BËù¶ÔÓ¦µÄÊýµÄ¾ø¶ÔÖµ£¬È»ºóÁгö·½³ÌÇó½â¼´¿É£»
£¨3£©ÉèyÃëºóÎÏÅ£B×·ÉÏÎÏÅ£A£¬¸ù¾ÝÎÏÅ£B±ÈÎÏÅ£AµÄ·³Ì¶à15Áгö·½³Ì£¬Çó½âµÃµ½Ê±¼ä£¬ÔÙ¸ù¾Ý·³Ì=ËÙ¶È¡Áʱ¼ä½øÐмÆËã¼´¿ÉµÃ½â£®
½â´ð ½â£º£¨1£©ÉèÎÏÅ£AµÄËÙ¶ÈΪxµ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ4xµ¥Î»³¤¶È/Ã룬
¸ù¾ÝÌâÒ⣬3$\sqrt{2}$£¨x+4x£©=15£¬
½âµÃ£ºx=$\frac{\sqrt{2}}{2}$£¬
¼´£ºÎÏÅ£AµÄËÙ¶ÈΪ$\frac{\sqrt{2}}{2}$µ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ2$\sqrt{2}$µ¥Î»³¤¶È/Ã룬
3$\sqrt{2}$Ãëʱ£¬ÎÏÅ£AµÄλÖÃÔÚ-$\frac{3}{2}\sqrt{2}$£¬ÎÏÅ£BµÄλÖÃÔÚ6$\sqrt{2}$£¬
ÔÚͼ1Éϱê×¢ÈçÏ£º![]()
£¨2£©ÉèxÃëʱԵãÇ¡ºÃ´¦ÔÚÁ½¸öÎÏÅ£µÄÕýÖм䣬
ÒÀÌâÒâµÃ£¬6$\sqrt{2}$-4x=$\frac{3}{2}\sqrt{2}$+x£¬
½âµÃ£ºx=$\frac{9}{10}\sqrt{2}$£»
£¨3£©ÉèyÃëºóÎÏÅ£B×·ÉÏÎÏÅ£A£¬
ÒÀÌâÒâµÃ£¬2$\sqrt{2}$y-$\frac{\sqrt{2}}{2}$y=15£¬
½âµÃ£ºy=5$\sqrt{2}$£¬
5$\sqrt{2}$¡Á2$\sqrt{5}$=10$\sqrt{10}$£¬
´ð£ºC´Ó¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯£¬ÐÐÊ»µÄ·³ÌÊÇ10$\sqrt{10}$¸öµ¥Î»³¤¶È£®
µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î·½³ÌµÄÓ¦Ó㬽âÌâ¹Ø¼üÊÇÒª¶Á¶®ÌâÄ¿µÄÒâ˼£¬¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£¬ÕÒ³öºÏÊʵĵÈÁ¿¹ØÏµÁгö·½³Ì£¬ÔÙÇó½â£®
| A£® | ƽÐÐËıßÐÎ | B£® | ÁâÐÎ | C£® | ¾ØÐÎ | D£® | Õý·½ÐÎ |