题目内容

已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F,证明:五边形AEBCF是⊙O的内接正五边形.
考点:正多边形和圆
专题:
分析:要求证五边形AEBCD是正五边形,就是证明这个五边形的五条边所对的弧相等进而得出即可.
解答:证明:连接BF,CE,
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠BAC=36°,
∴∠ABC=∠ACB=72°.
又∵AB、AC的中垂线分别交⊙O于点E、F,
∴AF=CF,AE=BE,
∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,
AE
=
AF
=
BE
=
BC
=
FC

∴AE=AF=BE=BC=FC,
∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.
∴五边形AEBCD为正五边形.
点评:本题主要考查了正多边形和圆,得出
AE
=
AF
=
BE
=
BC
=
FC
是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网