题目内容
考点:三角形内角和定理,三角形的外角性质
专题:规律型
分析:由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=96°,即可求出∠A5.
解答:解:∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,
∴∠A=2∠A1
同理可得∠A1=2∠A2,即∠A=22∠A2,
∴∠A=25∠A5,
∵∠A=80°,
∴∠A5=80°÷32=2.5°.
故答案为:2.5°.
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,
∴∠A=2∠A1
同理可得∠A1=2∠A2,即∠A=22∠A2,
∴∠A=25∠A5,
∵∠A=80°,
∴∠A5=80°÷32=2.5°.
故答案为:2.5°.
点评:本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.
练习册系列答案
相关题目
已知二次函数=a(x-2)2+k的图象开口向上,若点M(-2,y1),N(-1,y2),K(8,y3)在二次函数y=a(x-2)2+k的图象上,则下列结论正确的是( )
| A、y1<y2<y3 |
| B、y2<y1<y3 |
| C、y3<y1<y2 |
| D、y1<y3<y2 |
下列命题是真命题的是( )
| A、三角形的三条高线相交于三角形内一点 |
| B、等腰三角形的中线与高重合 |
| C、对于所有自然数n,n2-3n+7的值都是质数 |
| D、直角三角形中,30°角所对直角边是斜边一半 |
若关于x的一元二次方程(k-1)x2+2x-2=0有实数根,则k的取值范围是( )
A、k>
| ||
B、k≥
| ||
C、k>
| ||
D、k≥
|