题目内容
考点:扇形面积的计算,含30度角的直角三角形,矩形的性质
专题:
分析:连接PC,求出扇形CPQ的面积,再求出三角形PBC的面积,矩形面积减去扇形和三角形面积即可.
解答:
解:连接CP.
∵CQ=4,
∴CP=4,
∴PB=
=
=2
,
∴tan∠PCB=
=
=
,
∴∠PCB=60°,
∴∠PCB=90°-60°=30°,
∴S扇形CPQ=
=
,
S△CPB=
×2×2
=2
,
∴S阴影=7×2-2
-
π=14-2
-
π.
故答案为14-2
-
π.
∵CQ=4,
∴CP=4,
∴PB=
| CP2-CB2 |
| 42-22 |
| 3 |
∴tan∠PCB=
| PB |
| BC |
2
| ||
| 2 |
| 3 |
∴∠PCB=60°,
∴∠PCB=90°-60°=30°,
∴S扇形CPQ=
| 30π42 |
| 360 |
| 4π |
| 3 |
S△CPB=
| 1 |
| 2 |
| 3 |
| 3 |
∴S阴影=7×2-2
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 3 |
故答案为14-2
| 3 |
| 4 |
| 3 |
点评:本题考查了扇形面积的计算、含30°角的直角三角形和矩形的面积及勾股定理,有一定的综合性.
练习册系列答案
相关题目
| 1 |
| 3 |
A、
| ||||
B、3
| ||||
C、3
| ||||
D、
|
4的算术平方根是( )
| A、2 |
| B、-2 |
| C、±2 |
| D、a2+a2=a4 |