题目内容

14.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.

分析 过点P作AB 的垂线,垂足为E,根据题意可得出四边形PDBE是矩形,再由∠EPB=45°可知BE=PE=36m,由AE=PE•tan30°得出AE的长,进而可得出结论.

解答 解:如图,过点P作AB 的垂线,垂足为E,
∵PD⊥AB,DB⊥AB,
∴四边形PDBE是矩形,
∵BD=36m,∠EPB=45°,
∴BE=PE=36m,
∴AE=PE•tan30°=36×$\frac{\sqrt{3}}{3}$=12$\sqrt{3}$(m),
∴AB=12$\sqrt{3}$+36(m).
答:建筑物AB的高为$36+12\sqrt{3}$米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网