题目内容
3.解方程:(1)x=$\frac{3}{2}$x+16
(2)3x-4(2x+5)=x+4
(3)$\frac{x-1}{4}$-$\frac{2x-1}{6}$=1
(4)2.4-$\frac{x-4}{2.5}$=$\frac{3}{5}$x.
分析 (1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去括号,移项合并,把x系数化为1,即可求出解;
(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;
(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.
解答 解:(1)去分母得:2x=3x+32,
解得:x=-32;
(2)去括号得:3x-8x-20=x+4,
移项合并得:6x=-24,
解得:x=-4;
(3)去分母得:3x-3-4x+2=12,
移项合并得:-x=13,
解得:x=-13;
(4)方程整理得:2.4-$\frac{2x-8}{5}$=$\frac{3}{5}$x,
去分母得:12-2x+8=3x,
移项合并得:5x=20,
解得:x=4.
点评 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.
练习册系列答案
相关题目
14.
如图,均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:
(1)计算上述试验中“4朝下”的频率是$\frac{1}{6}$;
(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是$\frac{1}{3}$”的说法正确吗?
(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.
| 朝下数字 | 1 | 2 | 3 | 4 |
| 出现的次数 | 16 | 20 | 14 | 10 |
(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是$\frac{1}{3}$”的说法正确吗?
(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.