题目内容
11.若2x=3y,则$\frac{2x+y}{x-3y}$的值是( )| A. | -1 | B. | $-\frac{8}{3}$ | C. | 1 | D. | $\frac{8}{3}$ |
分析 利用已知得出x与y的关系,进而代入原式求出答案.
解答 解:∵2x=3y,
∴x=$\frac{3}{2}$y,
∴$\frac{2x+y}{x-3y}$=$\frac{3y+y}{\frac{3}{2}y-3y}$=$\frac{4y}{-\frac{3}{2}y}$=-$\frac{8}{3}$.
故选:B.
点评 此题主要考查了分式的值,正确得出x与y之间的关系是解题关键.
练习册系列答案
相关题目
1.下列计算正确的是( )
| A. | (x2)3=x5 | B. | a+2a=3a2 | C. | (-mn)5÷(-mn)3=m2n2 | D. | a3•a4=a12 |
16.把2ab2-4ba+2a分解因式的结果是( )
| A. | 2ab(b-2)+2a | B. | 2a(b2-2b) | C. | 2a(b+1)(b-1) | D. | 2a(b-1)2 |
3.化简$\sqrt{18}$的结果是( )
| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{6}$ | C. | 3$\sqrt{2}$ | D. | 3$\sqrt{6}$ |
13.
如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB=$\frac{3}{4}$,则⊙O的半径为( )
| A. | 4 | B. | 3 | C. | 2 | D. | $\sqrt{3}$ |