题目内容
14.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是“理想点”,且在正比例函数y=kx(k为常数,k≠0)图象上,求这个正比例函数的表达式.
(2)函数y=3mx-1(m为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m的代数式表示出“理想点”的坐标;若不存在,请说明理由.
分析 (1)根据“理想点”,确定a的值,即可确定M点的坐标,代入正比例函数解析式,即可解答;
(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x),则有3mx-1=2x,整理得:(3m-2)x=1,分两种情况讨论:当3m-2≠0,即m≠$\frac{2}{3}$时,解得:x=$\frac{1}{3m-2}$,当3m-2=0,即m=$\frac{2}{3}$时,x无解,即可解答.
解答 解:∵点M(2,a)是正比例函数y=kx(k为常数,k≠0)图象上的“理想点”,
∴a=4,
∵点M(2,4)在正比例函数y=kx(k为常数,k≠0)图象上,
∴4=2k,
解得k=2
∴正比例函数的解析式为y=2x.
(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x),
则有3mx-1=2x,
整理得:(3m-2)x=1,
当3m-2≠0,即m≠$\frac{2}{3}$时,解得:x=$\frac{1}{3m-2}$,
当3m-2=0,即m=$\frac{2}{3}$时,x无解,
综上所述,当m≠$\frac{2}{3}$时,函数图象上存在“理想点”,为($\frac{1}{3m-2}$,$\frac{2}{3m-2}$);
当m=$\frac{2}{3}$时,函数图象上不存在“理想点”.
点评 本题考查了一次函数图形上点的坐标特征,解决本题的关键是理解“理想点”的定义,确定点的坐标.
练习册系列答案
相关题目
9.在解方程$\frac{x-1}{3}-1=\frac{2x+3}{2}$时,去分母,得( )
| A. | 2(x-1)-1=3(2x+3) | B. | 2(x-1)+1=3(2x+3) | C. | 2(x-1)+6=3(2x+3) | D. | 2(x-1)-6=3(2x+3) |
6.一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m的值为( )
| A. | -1 | B. | 1 | C. | 3 | D. | -1或3 |
3.将自然数按以下规律排列,则2016所在的位置 ( )
| 第1列 | 第2列 | 第3列 | 第4列 | … | |
| 第1行 | 1 | 2 | 9 | 10 | |
| 第2行 | 4 | 3 | 8 | 11 | |
| 第3行 | 5 | 6 | 7 | 12 | |
| 第4行 | 16 | 15 | 14 | 13 | |
| 第5行 | 17 | … | |||
| … |
| A. | 第45行第10列 | B. | 第10行第45列 | C. | 第44行第10列 | D. | 第10行第44列 |