题目内容

4.二元一次方程组$\left\{\begin{array}{l}{x+y=5}\\{2x-y=4}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$C.$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$D.$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$

分析 根据加减消元法,可得方程组的解.

解答 解:$\left\{\begin{array}{l}{x+y=5①}\\{2x-y=4②}\end{array}\right.$
①+②,得 3x=9,
解得x=3,
把x=3代入①,
得3+y=5,
y=2,
所以原方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.
故选C.

点评 本题考查了解二元一次方程组,掌握加减消元法是解题的关键.本题还可以根据二元一次方程组的解的定义,将四个选项中每一组未知数的值代入原方程组进行检验.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网