题目内容
为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司一次性购进A,B两种型号的收割机30台.根据市场需求,这些收割机可以全部销售.其中,收割机的进价和售价见下表:
设公司计划购进A型收割机x台.
(1)用代数式表示收割机全部销售后公司获得的利润.
(2)收割机全部销售后公司获得的利润是40万元,则公司购进A、B两种型号的收割机各多少台?
| A型收割机 | B型收割机 | |
| 进价(万元/台) | 4 | 3 |
| 售价(万元/台) | 6 | 4 |
(1)用代数式表示收割机全部销售后公司获得的利润.
(2)收割机全部销售后公司获得的利润是40万元,则公司购进A、B两种型号的收割机各多少台?
考点:一元一次方程的应用
专题:
分析:(1)利润=(A型收割机售价-A型收割机进价)x+(B型收割机售价-B型收割机进价)×(30-x);
(2)利用(1)的结果,列出关于x的方程,通过解方程可以求得x、(30-x)的值.
(2)利用(1)的结果,列出关于x的方程,通过解方程可以求得x、(30-x)的值.
解答:解:(1)收割机全部销售后公司获得的利润为:(6-4)x+(4-3)(30-x)=x+30;
(2)依题意得:40=x+30,
解得 x=10,
则30-x=20.
答:公司购进A、B两种型号的收割机分别是10台、20台.
(2)依题意得:40=x+30,
解得 x=10,
则30-x=20.
答:公司购进A、B两种型号的收割机分别是10台、20台.
点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
练习册系列答案
相关题目