题目内容

求出不等式3x-2≥4(x-1)的所有非负整数解.

不等式的解集是x≤2,故不等式3x-2≥4(x-1)的非负整数解为0,1,2. 【解析】【试题分析】去括号得: 移项得: 合并得: ,系数化为1得:x≤2,所以不等式的非负整数解为0,1,2. 【试题解析】 去括号得: 移项得: 合并得: , 系数化为1得:x≤2, 所以不等式的非负整数解为0,1,2.
练习册系列答案
相关题目

下列事件中的不可能事件是(  )

A. 通常加热到100 ℃时,水沸腾

B. 抛掷2枚正方体骰子,都是6点朝上

C. 经过有交通信号灯的路口,遇到红灯

D. 任意画一个三角形,其内角和是360°

D 【解析】A. 是必然事件,选项错误; B. 是随机事件,选项错误; C. 是随机事件,选项错误; D. 是不可能事件,选项正确。 故选:D.

计算 的值是___________

【解析】试题分析: = = =a-b. 故答案为:a-b.

如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a(cm),若铁钉总长度为6(cm),则a的取值范围是__.

≤a< 【解析】【解析】 ∵每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是a(cm), 根据题意得:敲击2次后铁钉进入木块的长度是a+a=a(cm), 而此时还要敲击1次,∵铁钉总长度为6cm,故a<6, 第三次敲击进去最大长度是前一次的,也就是第二次的=a(cm), ∴ , ∴a的取值...

不等式3x+2<2x+3的解集在数轴上表示正确的是( )

A. B. C. D.

D 【解析】【解析】 3x+2<2x+3 移项及合并同类项,得 x<1,故选D.

如图,BE、CF是△ABC的高且相交于点P,AQ∥BC交CF延长线于点Q,若有BP=AC,CQ=AB,线段AP与AQ的关系如何?说明理由。

证明见解析 【解析】试题分析: 由BE、CF是△ABC的高,易得∠ABP+∠BPF=90°,∠ACP+∠CPE=90°,结合∠BPF=∠CPE,易得∠ABP=∠ACP,这样结合BP=AC,CQ=AB,即可由“SAS”证得△ACQ≌△PBA,从而可得AP=AQ,∠Q=∠PAF,结合∠PAF+∠APF=90°,可得:∠APF+∠Q=90°,即可得到∠QAP=90°,从而可得AQ⊥AP,由此...

某市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数(  )

A. 至少20户 B. 至多20户 C. 至少21户 D. 至多21户

C 【解析】试题分析:设这个小区的住户数为x户,得共需安装费10000+500x,由每户平均支付不足1000元,则总体安装费不足1000x,列不等式求解即可. 【解析】 设这个小区的住户数为x户, 则10000+500x<1000x,解得x>20. ∵x是整数,∴这个小区的住户数至少21户. 故选C.

如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.

(1)若AB=DC,则四边形ABCD的面积S=__;

(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).

(1)15;(2)=. 【解析】试题分析:(1)∵AB=DC,AB∥DC, ∴四边形ABCD是平行四边形, ∴四边形ABCD的面积S=5×3=15, (2)如图,连接EC,延长CD、BE交于点P, ∵E是AD中点, ∴AE=DE, 又∵AB∥CD, ∴∠ABE=∠P,∠A=∠PDE, 在△ABE和△DPE中, ∵, ∴△ABE≌△D...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网