题目内容

8.如图,四边形ABCD中,连接AC,BD,△ABC是等边三角形,∠ADC=30°,并且AD=4.5,BD=7,5,则CD的长为6.

分析 首先以CD为边作等边△CDE,连接AE,利用全等三角形的判定得出△BCD≌△ACE,进而求出DE的长即可.

解答 解:如图,以CD为边作等边△CDE,连接AE.
∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,
在△BCD和△ACE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CD=CE}\end{array}\right.$,
∴△BCD≌△ACE(SAS),
∴BD=AE.
又∵∠ADC=30°,
∴∠ADE=90°.
在Rt△ADE中,AE=7.5,AD=4.5,
于是DE=$\sqrt{A{E}^{2}-A{D}^{2}}$=6,
∴CD=DE=6.
故答案为6.

点评 此题主要考查了等边三角形的性质以及全等三角形的判定与性质,根据已知得出∠ADE=90°是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网