题目内容

2.如图,在△ABC中,∠C=90°,且AC=BC,AD平分∠BAC,交BC于D,DE⊥AB于E,AB=6cm,求△BDE的周长.

分析 由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,AC=AE,把△BDE的边长通过等量转化即可得出结论.

解答 解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
∴CD=DE.
在Rt△ACD与Rt△AED中,
$\left\{\begin{array}{l}{CD=DE}\\{AD=AD}\end{array}\right.$
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=6cm.

点评 本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网