ÌâÄ¿ÄÚÈÝ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãB£¨-2$\sqrt{2}$£¬0£©£¬A£¨m£¬0£©£¨$-\sqrt{2}£¼m£¼0$£©ÒÔABΪ±ßÔÚxÖáÏ·½×÷Õý·½ÐÎABCD£¬Á¬½áOD£¬¹ýB×÷BE´¹Ö±ÓÚODÓÚE£¬ÓëADÏཻÓÚµãF£®
£¨1£©ÇóÖ¤£ºBF=DO£»
£¨2£©Èç¹ûOE=DE£¬ÊÔÇó¾­¹ýB¡¢O¡¢FÈýµãµÄÅ×ÎïÏßy=a£¨x-x1£©£¨x-x2£©ÖÐaµÄÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¸Ãµã¹ØÓÚÖ±ÏßBEµÄ¶Ô³ÆµãÔÚÅ×ÎïÏßÉÏ£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öËùÓÐÕâÑùµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÓÉÕý·½ÐεÄÐÔÖʵÃAB=AD£¬¡ÏBAF=¡ÏDAO=90¡ã£¬ÔÙÀûÓõȽǵÄÓà½ÇÏàµÈµÃµ½¡ÏOBE=¡ÏADO£¬Ôò¿ÉÀûÓá°ASA¡±Åж¨¡÷ABF¡Õ¡÷ADO£¬ËùÒÔBF=DO£»
£¨2£©ÓÉ¡÷ABF¡Õ¡÷ADOµÃµ½AO=AF£¬ÔÙ¸ù¾ÝÏ߶δ¹Ö±Æ½·ÖÏßµÄÐÔÖʵÃBD=BO=2$\sqrt{2}$£¬½Óןù¾ÝÕý·½ÐεÄÐÔÖʿɼÆËã³öAB=AD=$\frac{\sqrt{2}}{2}$BD=2£¬ÔòOA=OB-AB=2$\sqrt{2}$-2=AF£¬ËùÒÔF£¨2-2$\sqrt{2}$£¬2-2$\sqrt{2}$£©£¬È»ºóÉè½»µãʽy=ax£¨x+2$\sqrt{2}$£©£¬ÔÙ°ÑF£¨2-2$\sqrt{2}$£¬2-2$\sqrt{2}$£©´úÈë¿ÉÇó³öaµÄÖµ$\frac{1}{2}$£»
£¨3£©¼Ù¶¨ÔÚÅ×ÎïÏßÉÏ´æÔÚÒ»µãP£¬Ê¹µãP ¹ØÓÚÖ±ÏßBE µÄ¶Ô³ÆµãP¡äÔÚx ÖáÉÏ£¬ÓÉÓÚBE ÊÇ¡ÏOBD µÄƽ·ÖÏߣ¬ÔòxÖáºÍÖ±ÏßBD¹ØÓÚÖ±ÏßBE¶Ô³Æ£¬ËùÒÔµãP ÊÇÅ×ÎïÏßÓëÖ±ÏßBD µÄ½»µã£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBD µÄ½âÎö±í´ïʽΪy=-x-2$\sqrt{2}$£¬È»ºó½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}+\sqrt{2}x}\\{y=-x-2\sqrt{2}}\end{array}\right.$µÃP¡äµãµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬0£©£¬£¨-2£¬2-2$\sqrt{2}$£©£¬µ±P¡äµãµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬0£©Ê±£¬Ò×µÃPµã×ø±êΪ£¨-2$\sqrt{2}$£¬0£©£»µ±P¡äµãµÄ×ø±êΪ£¨-2£¬2-2$\sqrt{2}$£©Ê±£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËã³öBP¡ä=4-2$\sqrt{2}$£¬ÔòBP=BP¡ä=4-2$\sqrt{2}$£¬OP=4$\sqrt{2}$-4£¬Ò׵ôËʱPµã×ø±êΪ£¨4-4$\sqrt{2}$£¬0£©£®

½â´ð £¨1£©Ö¤Ã÷£º¡ßËıßÐÎABCDΪÕý·½ÐΣ¬
¡àAB=AD£¬¡ÏBAF=¡ÏDAO=90¡ã£¬
¡ß¡ÏOBE+¡ÏBOE=90¡ã£¬¡ÏADO+¡ÏAOD=90¡ã£¬
¡à¡ÏOBE=¡ÏADO£¬
ÔÚ¡÷ABFºÍ¡÷ADOÖÐ
$\left\{\begin{array}{l}{¡ÏABF=¡ÏADO}\\{AB=AD}\\{¡ÏBAF=¡ÏDAO}\end{array}\right.$£¬
¡à¡÷ABF¡Õ¡÷ADO£¬
¡àBF=DO£»
£¨2£©½â£º¡ß¡÷ABF¡Õ¡÷ADO£¬
¡ßAO=AF£¬
¡ßBE¡ÍOD£¬OE=DE£¬¼´BE´¹Ö±Æ½·ÖOD£¬
¡àBD=BO=2$\sqrt{2}$£¬
¡ßBDΪÕý·½ÐÎABCDµÄ¶Ô½ÇÏߣ¬
¡àAB=AD=$\frac{\sqrt{2}}{2}$BD=2£¬
¡àOA=OB-AB=2$\sqrt{2}$-2£¬
¡àAF=OA=2$\sqrt{2}$-2£¬
¡àF£¨2-2$\sqrt{2}$£¬2-2$\sqrt{2}$£©£¬
Éè¾­¹ýB¡¢O¡¢FÈýµãµÄÅ×ÎïÏß½âÎöʽΪy=ax£¨x+2$\sqrt{2}$£©£¬
°ÑF£¨2-2$\sqrt{2}$£¬2-2$\sqrt{2}$£©´úÈëµÃ£¨2-2$\sqrt{2}$£©£¨2-2$\sqrt{2}$+2$\sqrt{2}$£©=2-2$\sqrt{2}$£¬½âµÃa=$\frac{1}{2}$£»
¡àÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$x£¨x+2$\sqrt{2}$£©£¬¼´y=$\frac{1}{2}$x2+$\sqrt{2}$x£¬
£¨3 £©½â£º´æÔÚ£®
¼Ù¶¨ÔÚÅ×ÎïÏßÉÏ´æÔÚÒ»µãP£¬Ê¹µãP ¹ØÓÚÖ±ÏßBE µÄ¶Ô³ÆµãP¡äÔÚx ÖáÉÏ£®
¡ßBD=BO£¬BE¡ÍOD£¬
¡àBE ÊÇ¡ÏOBD µÄƽ·ÖÏߣ¬
¡àxÖáºÍÖ±ÏßBD¹ØÓÚÖ±ÏßBE¶Ô³Æ£¬
¡àx ÖáÉϵĵãP¹ØÓÚÖ±ÏßBE µÄ¶Ô³ÆµãP¡ä±ØÔÚÖ±ÏßBD ÉÏ£¬¼´µãP ÊÇÅ×ÎïÏßÓëÖ±ÏßBD µÄ½»µã£¬Èçͼ£¬
ÉèÖ±ÏßBD µÄ½âÎö±í´ïʽΪy=kx+b£¬
°ÑB£¨-2$\sqrt{2}$£¬0£©£¬D£¨2-2$\sqrt{2}$£¬-2£©´úÈëµÃ$\left\{\begin{array}{l}{-2\sqrt{2}k+b=0}\\{£¨2-2\sqrt{2}£©k+b=-2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=-2\sqrt{2}}\end{array}\right.$£¬
¡àÖ±ÏßBD µÄ½âÎö±í´ïʽΪy=-x-2$\sqrt{2}$£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}+\sqrt{2}x}\\{y=-x-2\sqrt{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2\sqrt{2}}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2}\\{y=2-2\sqrt{2}}\end{array}\right.$£¬ÔòP¡äµãµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬0£©£¬£¨-2£¬2-2$\sqrt{2}$£©£¬
µ±P¡äµãµÄ×ø±êΪ£¨-2$\sqrt{2}$£¬0£©Ê±£¬µãPÔÚBµã£¬´ËʱPµã×ø±êΪ£¨-2$\sqrt{2}$£¬0£©£»
P¡äµãµÄ×ø±êΪ£¨-2£¬2-2$\sqrt{2}$£©Ê±£¬BP¡ä=$\sqrt{£¨-2\sqrt{2}+2£©^{2}+£¨-2+2\sqrt{2}£©^{2}}$=4-2$\sqrt{2}$£¬ÔòBP=OP=4-2$\sqrt{2}$£¬OP=2$\sqrt{2}$-£¨4-2$\sqrt{2}$£©=4$\sqrt{2}$-4£¬´ËʱPµã×ø±êΪ£¨4-4$\sqrt{2}$£¬0£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄPµã×ø±êΪ£¨-2$\sqrt{2}$£¬0£©£¬£¨4-4$\sqrt{2}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢Õý·½ÐεÄÐÔÖʺ͵ÈÑüÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£»»áÔËÓÃÈ«µÈÈý½ÇÐεÄ֪ʶ½â¾öÏß¶ÎÏàµÈµÄÎÊÌ⣻»áÇóÅ×ÎïÏßÓëÖ±ÏߵĽ»µã×ø±ê£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø