题目内容
1.分析 由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.
解答 解:∵360÷30=12,
∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).
故答案为:180.
点评 本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.
练习册系列答案
相关题目
12.若多项式x2+ax+9恰好是另一个多项式的平方,则a值( )
| A. | ±6 | B. | -6 | C. | 3 | D. | ±3 |
10.
如图,用12米长的木条做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的高AB(木条粗细忽略不计)为( )
| A. | 1米 | B. | 2米 | C. | 3米 | D. | 4米 |