题目内容

12.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.

分析 (1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.

解答 解:(1)△BEC是等腰三角形;理由如下:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE=$\sqrt{A{E}^{2}+A{B}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
答:BC的长是2$\sqrt{2}$.

点评 本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网