题目内容

7.已知如图,在△ABC中,AB=AC,D、E是BC上异于B、C的任意两点,连接AD和AE,且AD=AE.
(1)图中有几组全等三角形?请分别写出来;
(2)选择其中的一组证明两三角形全等.

分析 (1)根据全等三角形的判定进行解答即可;
(2)由AB=AC,利用等边对等角得到一对角相等,同理由AD=AE得到一对角相等,再利用外角性质及等量代换可得出一对角相等,利用ASA得出三角形ABD与三角形AEC全等,利用全等三角形的对应边相等可得证.

解答 解:(1)有2组全等三角形,分别是:△ABD≌△ACE;△ABE≌△ACD;
(2)∵AB=AC,
∴∠B=∠C(等边对等角),
∵AD=AE,
∴∠ADE=∠AED(等边对等角),
又∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,
∴∠BAD=∠CAE(等量代换),
在△ABD和△ACE中,
$\left\{\begin{array}{l}{∠B=∠C}\\{AB=AC}\\{∠BAD=∠CAE}\end{array}\right.$,
∴△ABD≌△ACE(ASA),
∴BD=CE(全等三角形的对应边相等).

点评 此题考查了全等三角形的判定与性质,等腰三角形的性质,利用了等量代换的思想,做题时注意一题多解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网