题目内容


如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为(  )

A.α=β  B.α=2β C.α+β=90°  D.α+2β=180°


B【考点】全等三角形的性质.

【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.

【解答】解:∵△AOB≌△ADC,

∴AB=AC,∠BAO=∠CAD,

∴∠BAC=∠OAD=α,

在△ABC中,∠ABC=(180°﹣α),

∵BC∥OA,

∴∠OBC=180°﹣∠O=180°﹣90°=90°,

∴β+(180°﹣α)=90°,

整理得,α=2β.

故选B.

【点评】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网