题目内容
(1)按如图所示的直角坐标系,求此抛物线的函数表达式;
(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行,如果该船的速度不变,那么它能否安全通过此桥?
考点:二次函数的应用
专题:
分析:(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据设函数解析式为y=ax2,由待定系数法求出其解即可;
(2)计算出船行驶到桥下的时间,由这个时间按计算水位上升的高度,比较上升的高度与3的大小就可以求出结论.
(2)计算出船行驶到桥下的时间,由这个时间按计算水位上升的高度,比较上升的高度与3的大小就可以求出结论.
解答:解:(1)设抛物线的解析式为y=ax2(a不等于0),桥拱最高点O到水面CD的距离为h米.
则D(5,-h),B(10,-h-3)
∴
,
解得
,
∴抛物线的解析式为y=-
x2;
(2)由题意,得
船行驶到桥下的时间为:35÷5=7小时,
水位上升的高度为:0.25×7=1.75米.
∵1.75<3.
∴船的速度不变,它能安全通过此桥.
则D(5,-h),B(10,-h-3)
∴
|
解得
|
∴抛物线的解析式为y=-
| 1 |
| 25 |
(2)由题意,得
船行驶到桥下的时间为:35÷5=7小时,
水位上升的高度为:0.25×7=1.75米.
∵1.75<3.
∴船的速度不变,它能安全通过此桥.
点评:本题考查了运用待定系数法求二次函数的解析式的运用,行程问题的数量关系的运用,有理数大小的比较的运用,解答时求出函数的解析式是关键.
练习册系列答案
相关题目