题目内容
考点:相似三角形的判定
专题:
分析:过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.
解答:
解:由于△ABC是直角三角形,
过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,
所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,
过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.
故答案为:3.
过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,
所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,
过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.
故答案为:3.
点评:本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.
练习册系列答案
相关题目