题目内容

如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

【解析】 因为直角三角形ABC中,BC=,AB=4, 所以BC=4,设DF=x, 在直角三角形AFD中, , 在直角三角形DCE中, , 所以 所以DE=米。 【解析】试题分析:由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE═==,在Rt△ABC中,得到,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE即可求出x的长....
练习册系列答案
相关题目

有两条或两条以上对称轴的轴对称图形是( )

A. 等腰三角形 B. 角 C. 等边三角形 D. 锐角三角形

C 【解析】A.等腰三角形只有一条对称轴; B.角也只有一条对称轴,是角平分线所在的直线; C.等边三角形有三条对称轴; D.锐角三角形的对称轴数量不确定. 故选:C

在△ABC中,∠B=40°,∠C=70°,则△ABC中是           三角形

等腰 【解析】本题考查的是三角形的分类。∠C=180°-40°-70°=70°,所以∠A=∠C=70°故为等腰三角形。

如图,MN表示某引水工程的一段设计路线,从点M到点N的走向为北偏西30°,在点M的北偏西60°方向上有一点A,以点A为圆心,以500米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为北偏西75°.已知MB=400米,若不改变方向,则输水路线是否会穿过居民区?请通过计算说明理由.(参考数据: ≈1.732)

不会穿过居民区,理由见解析. 【解析】试题分析:要判断输水路线是否会穿过居民区,即要比较点A到MN的距离与500的大小,要求点A到MN的距离,作AD⊥MN交MN于点D,设AD=x,不难表示出DM=x+400,再由tan∠AMD==列出方程,解出x,比较x与500的大小,若x>500,则不会穿过居民区;若x≤500,则会穿过居民区. 试题解析: 【解析】 过A作AD⊥MN于点D,...

某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:

(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?

(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?

(1)工厂消耗每千度电产生利润是180元(2)当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元 【解析】试题分析:(1)设y=kx+b(k≠0),利用待定系数法求一次函数解析式解答即可; (2)根据利润=每天的用电量×每千度电产生利润y,然后整理得到W与m的关系式,再根据二次函数的最值问题解答. 【解析】 (1)设工厂每千度电产生利润y(元/千度)与电价x(元/千...

如图,二次函数y= -x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足

S△AOP=3,则点P的坐标是(  )

A. (-3,-3) B. (1,-3) C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)

D 【解析】分析:根据抛物线的解析式,即可确定点A的坐标,由于OA是定长,根据△AOP的面积即可确定P点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P点的坐标. 解答:【解析】 抛物线的解析式中,令y=0,得:-x2-2x=0,解得x=0,x=-2; ∴A(-2,0),OA=2; ∵S△AOP=OA?|yP|=3,∴|yP|=3; 当P点纵坐标为3时,-x2-...

如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.

直线x=2 【解析】试题分析:当两点到对称轴距离相等时,则所对应的函数值相等,则二次函数的对称轴为:x==2.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网