题目内容
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:
(即AB:BC=1:
),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).
![]()
如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确( )
![]()
A. 两根相异,且均为正根
B. 两根相异,且只有一个正根
C. 两根相同,且为正根
D. 两根相同,且为负根
有两条或两条以上对称轴的轴对称图形是( )
A. 等腰三角形 B. 角 C. 等边三角形 D. 锐角三角形
在△ABC中,∠B=40°,∠C=70°,则△ABC中是 三角形
如图,MN表示某引水工程的一段设计路线,从点M到点N的走向为北偏西30°,在点M的北偏西60°方向上有一点A,以点A为圆心,以500米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为北偏西75°.已知MB=400米,若不改变方向,则输水路线是否会穿过居民区?请通过计算说明理由.(参考数据:
≈1.732)
![]()
如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一条直线上.已知AC=32米,CD=16米,则荷塘宽BD为________米(取
≈1.73,结果保留整数).
![]()
某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
![]()
(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
如图,二次函数y= -x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足
S△AOP=3,则点P的坐标是( )
![]()
A. (-3,-3) B. (1,-3) C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)
如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.
![]()