题目内容


如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB交CD于点E.若AB=6,则△AEC的面积为(  )

A.12     B.4  C.8  D.6


B【考点】旋转的性质.

【专题】推理填空题.

【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.

【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,

∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,

∴∠DAD′=60°,

∴∠DAE=30°,

∴∠EAC=∠ACD=30°,

∴AE=CE,

在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2

根据勾股定理得:x2=(6﹣x)2+(22

解得:x=4,

∴EC=4,

则SAEC=EC•AD=4

故选:B.

【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网