题目内容


如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是__________


1

【考点】全等三角形的判定与性质.

【专题】几何图形问题.

【分析】根据AD⊥BC,CE⊥AB,得出∠ADB=∠AEH=90°,再根据∠BAD=∠BCE,利用AAS得到△HEA≌△BEC,由全等三角形的对应边相等得到AE=EC,由HC=EC﹣EH代入计算即可.

【解答】解:∵AD⊥BC,CE⊥AB,

∴∠ADB=∠AEH=90°,

∵∠AHE=∠CHD,

∴∠BAD=∠BCE,

∵在△HEA和△BEC中,

∴△HEA≌△BEC(AAS),

∴AE=EC=4,

则CH=EC﹣EH=AE﹣EH=4﹣3=1.

故答案为:1.

【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,解题的关键是找出图中的全等三角形,并进行证明.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网