ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÊÔ¼ÆËãÑ̺ж¥¸ÇABCDµÄÃæ»ý£¨±¾Ð¡Ìâ¼ÆËã½á¹û²»È¡½üËÆÖµ£©£®
£¨2£©ÖÆ×÷ÕâÑùÒ»¸öÑ̺ÐÖÁÉÙÐèÒª¶àÉÙÃæ»ýµÄÖ½ÕÅ£¨²»¼ÆÖصþÕ³ºÏµÄ²¿·Ö£¬¼ÆËã½á¹û¾«È·µ½0.1cm£¬$\sqrt{3}$È¡1.73£©£®
·ÖÎö £¨1£©ÇóÑ̺ж¥¸ÇABCDµÄÃæ»ý£¬¼´ÇóABÓëADµÄ»ý£»Èçͼ£¬¿ÉÒÔ×÷O1E¡ÍO2O3£¬Çó³öO1EµÄ³¤£¬¶øÓÉͼ·¢ÏÖAB=2¡ÁO1E+Ò»Ö§ÏãÑ̵ÄÖ±¾¶£¬AD=7¡ÁÒ»Ö§ÏãÑ̵ÄÖ±¾¶£¬´Ó¶ø½â¾öÎÊÌ⣻
£¨2£©Ñ̺ÐÖÁÉÙÐèÒª¶àÉÙÃæ»ýµÄÖ½ÕÅ£¬Í¨¹ý³¤·½ÌåµÄ±íÃæ»ý¹«Ê½¿ÉµÃ£®
½â´ð ½â£º£¨1£©Èçͼ£¬×÷O1E¡ÍO2O3£»![]()
¡ßO1O2=O2O3=O3O1=0.75=$\frac{3}{4}$£¬¡ÏO1O2O3=60¡ã£¬
¡àO1E=O1O2•sin60¡ã=$\frac{3}{4}$¡Á$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{8}$£¬
¡àAB=2¡Á$\frac{3\sqrt{3}}{8}$+$\frac{3}{4}$=$\frac{3\sqrt{3}+3}{4}$£¨cm£©£¬
AD=7¡Á$\frac{3}{4}$£¨cm£©£¬
¡àËıßÐÎABCDµÄÃæ»ýÊÇ£º$\frac{21}{4}$¡Á$\frac{3\sqrt{3}+3}{4}$=$\frac{63\sqrt{3}+63}{16}$£¨cm£©2£¬
£¨2£©ÖÆ×÷Ò»¸öÑ̺ÐÖÁÉÙÐèÒªÖ½ÕÅ£º2£¨$\frac{63\sqrt{3}+63}{16}$+$\frac{3\sqrt{3}+3}{4}$¡Á8.4+$\frac{21}{4}$¡Á8.4£©=144.096¡Ö144.1£¨cm£©2£¬
´ð£ºÖÆ×÷Ò»¸öÑ̺ÐÖÁÉÙÐèÒªµÄÖ½ÕÅÊÇ144.1£¨cm£©2£®
µãÆÀ ±¾Ì⿼²éÁËÈñ½ÇÈý½Çº¯Êý¹ØÏµµÄÓ¦ÓÃÒÔ¼°¶à¸öÔ²µÄλÖùØÏµÖеÄÃæ»ýÎÊÌ⣬¹Ø¼üÊǽ«Í¼ÐÎϸ»¯ÎªÈý¸öÔ²£¬Çó³öABµÄ³¤£®
| A£® | 7 | B£® | 0 | C£® | -1 | D£® | -2 |
ÏúÊÛʱ¶Î | ÏúÊÛÊýÁ¿ | ÏúÊÛÊÕÈë | |
| AÖÖÐͺŠ| BÖÖÐͺŠ| ÏúÊÛÊÕÈë | |
| µÚÒ»ÖÜ | 3 | 5 | 1800Ôª |
| µÚ¶þÖÜ | 4 | 10 | 3100Ôª |
£¨2£©Èô³¬Ê±ÔٲɹºÕâÁ½ÖÖÐͺŵĵç·çÉȹ²30̨£¬²¢ÇÒÈ«²¿ÏúÊÛÍ꣬¸Ã³¬ÊÐÄÜ·ñʵÏÖÀûÈóΪ14000ÔªµÄÀûÈóÄ¿±ê£¿ÈôÄÜ£¬Çë¸ø³öÏàÓ¦µÄ²É¹º·½°¸£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®