题目内容
11.已知∠1与∠2是同位角,则( )| A. | ∠1=∠2 | B. | ∠1>∠2 | C. | ∠1<∠2 | D. | 以上都有可能 |
分析 根据同位角的定义和平行线的性质判断即可.
解答 解:∵只有两直线平行时,同位角才可能相等,
∴根据已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
三种情况都有可能,
故选D.
点评 本题考查了同位角和平行线的性质,能理解同位角的定义是解此题的关键.
练习册系列答案
相关题目
1.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)
(1)若该厂购进正方形纸板1000张,长方形纸板2000张,问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.
分析:思考加工一个竖式纸盒需要几张长方形和正方形纸板?加工一个横式纸盒呢?
请填写下表(设加工x只竖式纸盒,y只横式纸盒,恰好能将购进的纸板全部用完):
根据上表可得方程组$\left\{\begin{array}{l}{x+2y=1000}\\{4x+3y=2000}\end{array}\right.$;解这个方程组,得$\left\{\begin{array}{l}{x=200}\\{y=400}\end{array}\right.$.
(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.
(1)若该厂购进正方形纸板1000张,长方形纸板2000张,问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.
分析:思考加工一个竖式纸盒需要几张长方形和正方形纸板?加工一个横式纸盒呢?
请填写下表(设加工x只竖式纸盒,y只横式纸盒,恰好能将购进的纸板全部用完):
| x只竖式纸盒中 | y只横式纸盒中 | 合计 | |
| 正方形纸板的张数 | x | 2y | 1000 |
| 长方形纸板的张数 | 4x | 3y | 2000 |
(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.
3.
如图,由3个大小完全一样的正方体组成的几何体的主视图是( )
| A. | B. | C. | D. |
20.下列各组数是三角形的三边,不能组成直角三角形的一组数是( )
| A. | 3,4,5 | B. | 6,8,10 | C. | 1.5,2,2.5 | D. | $\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$ |